skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gallo, Natalya D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Fjords provide valuable research opportunities for marine scientists. They are excellent natural infrastructure for climate impact studies associated with hypoxic episodes and consequences for mesopelagic and deep‐sea ecosystems involving oceanographic circulation processes and basin water renewals. Repeated sampling from the same populations is possible, making fjords excellent systems for developing time series of data for climate impact studies. We provide an overview of the 14 years of data from Norwegian West Coast fjords, focusing on Masfjorden, and report major findings from Oslofjorden in Eastern Norway, exhibiting recurrent hypoxia in the basin waters. We document that the oxygen levels in Masfjorden decreased rapidly by over 60% at 450 m depth in < 8 years, which is much faster than the average rate of deoxygenation in the global ocean. We also discuss the increase in the deep‐sea and low‐light‐adapted coronate jellyfishPeriphylla periphyllain view of altered optical conditions of the basin water potentially related to deoxygenation. We argue that fjords like Masfjorden and Oslofjorden are not only macrocosms for ecological processes but also are likely an accelerated version of deep oceans with respect to climate impacts. 
    more » « less
    Free, publicly-accessible full text available January 4, 2026
  2. Abstract. Anthropogenic warming and nutrient over-enrichment of our oceans have resulted in significant, and often catastrophic, reductions in dissolved oxygen (deoxygenation). Stress on water-breathing animals from this deoxygenation has been shown to occur at all levels of biological organization: cellular, organ, individual, species, population, community, and ecosystem. Most climate forecasts predict increases in ocean deoxygenation; thus, it is essential to develop reliable biological indicators of low-oxygen stress that can be used by regional and global oxygen monitoring efforts to detect and assess the impacts of deoxygenation on ocean life. This review focuses on responses to low-oxygen stress that are manifest at different levels of biological organization and at a variety of spatial and temporal scales. We compare particular attributes of these biological indicators to the dissolved oxygen threshold of response, timescales of response, sensitive life stages and taxa, and the ability to scale the response to oxygen stress across levels of organization. Where there is available evidence, we discuss the interactions of other biological and abiotic stressors on the biological indicators of low-oxygen stress. We address the utility, confounding effects, and implementation of the biological indicators of oxygen stress for research and societal applications. Our hope is that further refinement and dissemination of these oxygen stress indicators will provide more direct support for environmental managers, fisheries and mariculture scientists, conservation professionals, and policymakers to confront the challenges of ocean deoxygenation. An improved understanding of the sensitivity of different ocean species, communities, and ecosystems to low-oxygen stress will empower efforts to design monitoring programs, assess ecosystem health, develop management guidelines, track conditions, and detect low-oxygen events. 
    more » « less
  3. IntroductionA defining aspect of the Intergovernmental Panel on Climate Change (IPCC) assessment reports (AR) is a formal uncertainty language framework that emphasizes higher certainty issues across the reports, especially in the executive summaries and short summaries for policymakers. As a result, potentially significant risks involving understudied components of the climate system are shielded from view. MethodsHere we seek to address this in the latest, sixth assessment report (AR6) for one such component—the deep ocean—by summarizing major uncertainties (based on discussions of low confidence issues or gaps) regarding its role in our changing climate system. The goal is to identify key research priorities to improve IPCC confidence levels in deep ocean systems and facilitate the dissemination of IPCC results regarding potentially high impact deep ocean processes to decision-makers. This will accelerate improvement of global climate projections and aid in informing efforts to mitigate climate change impacts. An analysis of 3,000 pages across the six selected AR6 reports revealed 219 major science gaps related to the deep ocean. These were categorized by climate stressor and nature of impacts. ResultsHalf of these are biological science gaps, primarily surrounding our understanding of changes in ocean ecosystems, fisheries, and primary productivity. The remaining science gaps are related to uncertainties in the physical (32%) and biogeochemical (15%) ocean states and processes. Model deficiencies are the leading cited cause of low certainty in the physical ocean and ice states, whereas causes of biological uncertainties are most often attributed to limited studies and observations or conflicting results. DiscussionKey areas for coordinated effort within the deep ocean observing and modeling community have emerged, which will improve confidence in the deep ocean state and its ongoing changes for the next assessment report. This list of key “known unknowns” includes meridional overturning circulation, ocean deoxygenation and acidification, primary production, food supply and the ocean carbon cycle, climate change impacts on ocean ecosystems and fisheries, and ocean-based climate interventions. From these findings, we offer recommendations for AR7 to avoid omitting low confidence-high risk changes in the climate system. 
    more » « less
  4. Campbell, Barbara J. (Ed.)
    ABSTRACT Hadal snailfishes are the deepest-living fishes in the ocean, inhabiting trenches from depths of ∼6,000 to 8,000 m. While the microbial communities in trench environments have begun to be characterized, the microbes associated with hadal megafauna remain relatively unknown. Here, we describe the gut microbiomes of two hadal snailfishes, Pseudoliparis swirei (Mariana Trench) and Notoliparis kermadecensis (Kermadec Trench), using 16S rRNA gene amplicon sequencing. We contextualize these microbiomes with comparisons to the abyssal macrourid Coryphaenoides yaquinae and the continental shelf-dwelling snailfish Careproctus melanurus . The microbial communities of the hadal snailfishes were distinct from their shallower counterparts and were dominated by the same sequences related to the Mycoplasmataceae and Desulfovibrionaceae . These shared taxa indicate that symbiont lineages have remained similar to the ancestral symbiont since their geographic separation or that they are dispersed between geographically distant trenches and subsequently colonize specific hosts. The abyssal and hadal fishes contained sequences related to known, cultured piezophiles, microbes that grow optimally under high hydrostatic pressure, including Psychromonas , Moritella , and Shewanella . These taxa are adept at colonizing nutrient-rich environments present in the deep ocean, such as on particles and in the guts of hosts, and we hypothesize they could make a dietary contribution to deep-sea fishes by degrading chitin and producing fatty acids. We characterize the gut microbiota within some of the deepest fishes to provide new insight into the diversity and distribution of host-associated microbial taxa and the potential of these animals, and the microbes they harbor, for understanding adaptation to deep-sea habitats. IMPORTANCE Hadal trenches, characterized by high hydrostatic pressures and low temperatures, are one of the most extreme environments on our planet. By examining the microbiome of abyssal and hadal fishes, we provide insight into the diversity and distribution of host-associated life at great depth. Our findings show that there are similar microbial populations in fishes geographically separated by thousands of miles, reflecting strong selection for specific microbial lineages. Only a few psychropiezophilic taxa, which do not reflect the diversity of microbial life at great depth, have been successfully isolated in the laboratory. Our examination of deep-sea fish microbiomes shows that typical high-pressure culturing methodologies, which have largely remained unchanged since the pioneering work of Claude ZoBell in the 1950s, may simulate the chemical environment found in animal guts and helps explain why the same deep-sea genera are consistently isolated. 
    more » « less